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PREFACE

This report is submitted to NASA under the "Common Case Study" program;

the work was performed as Mod 4 to Contract NAS 1-14625 during the period

January to August 1978. The program is under the direction of C. Driver at

the NASA-Langley Research Center, Hampton, Va., and was initia_ed to provide

technical support to the ICAO Committee on Aircraft Noise, Working Group E,

in order to provide a technical basis for the determination of noise limits

for future supersonic transports. In particular, the "common case" design

studies are being used to calibrate the parametric design results arising

from member nation studies in the areas of noise-cost sensitivity. The

report is a summary of work performed and the results therefron, and is

intended to be in a suitable format for use by Working Group E.

The study was managed by John Clauss (SCAR Assistant Program Manager).

Lockheed personnel responsible for the aircraft design and technical support

are: Mel Osborn (Design), Ben Saelman (Weight and Balance), Jim Wilson and

Tom Oatway (Propulsion), Jack Werner (ASSET operation), Mary B_xendale (Aero-

dynamics), Dalen Homing (Economics), and Tony Hays (Acoustics_. Personnel

responsible for engine synthesis are Jim Wilson and Dave Gorz.
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THECOMMONCASESTUDY: LOCKHEEDDESIGNOFA SUPERSONICCRUISEVEHICLE

John S. Clauss, Jr., Anthony P. Hays, and JamesR. Wilagn
Lockheed-Callfornia Company

SUMMARY

This study was performed in order to provide data for the F_A to assist
the ICAOCommittee on Aircraft Noise, Working Group E, in setting certifica-
tion noise standards for future SSTs. The overall objective of this common
case study is to calibrate the parametric design results arising from member
nation studies of topics such as nolse-cost sensitivity. Comparlsonswill
be madeof the characteristics of SSTsdesigned for the samemission by
Lockheed-Californla Co., McDonnell Douglas, British Aerospace (_[),
Aerospatiale (France), and the USSR. The effort reported herein describes
Lockheed's conm_oncase design.

The guidelines for the commoncase study are to design an aircraft
with the following mission: payload - 23 247 kg (51 250 Ibm), range -
7000 km (3780 n.mi.), cruise Machnumber- 2.2. Field length is constrained
to 3505 m (ii 500 ft), and other airfield constraints and fuel r_serves are
also specified. Technology level is specified as ICAOClass II _1980-85
start of design). The desired aircraft design is to be the mini_um takeoff
gross weight (TOGW)configuration, unconstrained by airport noise require-
ments. FAR36 noise and DOCare to be calculated for this minimtm TOGW
aircraft.

The ICAOClass II technology requirements have primary impa_t on the
structural and material concepts employed in the airframe structure and in
the engine cycle chosen. Active controls are permitted, but no composite
materials in the primary structure are allowed. The resulting airframe is
about 58 percent titanium, 28 percent composites in secondary structure
application, and 14 percent steel and other materials, by structural weight.

The powerplant selected for the study is an in-house Lockheeddesign of
a low bypass ratio (0.25) afterburning turbofan with a combustion exit
temperature of 1600OK(2880OR). This powerplant was synthesized specifically
for the commoncase effort. This is the best engine cycle for the common
case mission except for the variable cycle which is not included in Class II.
The combustor exit temperature chosen is the maximumallowed by Class II.

A series of parametric aircraft designs were generated by varying wing
loading (W/S) and thrust weight ratio (T/W) while adjusting TOGWto maintain
the desired mission range of 7000 km (3780 n.mi.). These are summarized in
a TOGWknothole chart which showsan unconstrained optimum config_ration
to have a T/W of about 0.26, a W/Sof 4788 N/m2 (i00 ib/ft2), and a TOGWof
260 816 kg (575 000 ibm).





The selected approach speed constraint of 81.3 m/s (158 keas) forces the
constrained optimum configuration to a T/W of 0.254, a W/S of 3830 N/_2
(80 ib/ft2), and a TOGWof 269 483 kg (594 109 Ibm). The takeoff fie_d length
(TOFL) constraint is somewhatartificial since, without noise constraints, any
takeoff thrust setting up to full after burner could have been selected. The
actual setting selected here employs a combustor exist temperature of 1489°K
(2680°R), a value less than the maximumavailable, and does not utili_e reheat.

Other leading characteristics of the resulting constrained minimumTOGW
design are: operating weight empty (OEW)- 116 918 kg (257 759 ibm), design
point DOC- 1.65 C/seat km C2.66 C/seat n.mi.), sideline noise - 119._i EPNdB,
flyover noise - 122.6 EPNdB,approach noise - 110.9 EPNdB.

A second configuration was designed for a range of 7408 km (4000 n.mi.)
with the sameconstrained values of T/W and W/S. TOGWfor this design is
increased to 286 537 kg (631 705 ibm). Detailed geometric, aerodynamic and
performance characteristics of both designs are given.
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INTRODUCTION

Background

The International Civil Aviation Organization (ICAO) is responsible for
setting standards for the regulation of international civil aircraft opera-
tions. In particular, the Committee on Aircraft Noise (CAN) ha_ the responsi-
bility of setting worldwide noise standards for civil aircraft. These
standards represent minimumrequirements, and they maybe overridden by more
stringent national standards. ICAOhas set standards for subsonic civil
aircraft (Reference i), and is in the process of drawing up standards for
supersonic civil aircraft. To this end, Working Group E (WG/E)was set up
to recommendto CANwhich noise standards should be applied (Reference 2).
At the first WG/Emeeting in March 1977, a working paper was presented that
outlined the NASASupersonic Cruise Aircraft Research (SCAR)program (Refer-
ence 3). As a result, it was decided to initiate contracts between industry
(Boeing, McDonnell Douglas, and Lockheed) and NASAto provide technical
assistance in support of WG/E.

Purpose of Study

At the January 4-10, 1978 meeting of the WG/EInternational Technical
Experts, the Federal Aviation Administration (FAA) initiated co_Itracts to
determine the trade-offs between aircraft operating cost and noise at the
FARPart 36 measurementpoints. In order to calibrate the parametric air-
craft designs arising from these studies (e.g.,Reference 4), coT_tracts were
also initiated for each design group to derive a supersonic cruise vehicle
(SCV)with a specified mission - a "commoncase" design. Identical design
studies are being conducted in the United Kingdom, France,and the USSR. Final
results from these commoncase studies are to be presented at t!_e November197_
WG/Emeeting.
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i. TECHNICALAPPROACH

i.i Study Ground Rules

The aim of the commoncase design study is to select the minimumtakeoff
gross weight (TOGW)vehicle capable of transporting 250 passengers 7000 km
(3780 n.mi.) at a cruise Machnumber of 2.2. Noise constraints are not to be
considered. The level of technology selected for the design is defined as
Class II (1980-1985 start of design). Details of the ground rules are
listed below.

The terms of the contract between NISA and Lockheed for conpletion of
the FAA-sponsoredstudies specify a range of 7408 km (4000 n.mi.) for the
design mission. Using the optimized values of thrust/weight and wing loading
obtained from the 7000 km range aircraft, the aircraft is to be resized to
fly 7408 km (4000 n.mi.). The resized configuration is described in
Appendix B.

For the remainder of this report, the 7000 km aircraft will be designatec
the CI_1627-1 while the 7408 km (4000 n.mi.) aircraft will be designated the
CL 1627-2.

1.1.1 Class II Definition Sun_ary. - ICAO Class II technology definitions
from Reference 4 are listed in Appendix A. These definitions have the

following impact on the baseline vehicle concept:

• No composite materials in primary structure

• Active controls employed

• No variable cycle engines permitted

• Combustor exit temperature = 1600°K (2880°R)

1.1.2 Mission Requirements. - The requirements presented in Table I are taken

from the negotiated statement of work for Mod 4 to NASA Contract NASI-14625.

These ground rules are essentially identical to those of Attachment I of Refer-

ence 5. It should be noted that no approach speed is specified. Lockheed

assumes that a maximum approach speed of 81.3 m/s (158 keas) is permissible,

and this constraint is applied to the results. This approach speed value is

the one used in Lockheed SCAR contract studies to date which in uurn is based

on Concorde capability.

The minimum TOGW aircraft is not to be constrained by any prescribed air-

port noise levels. However, noise levels at the FAR 36 measurement points

are calculated for the selected minimum TOGW design.





TABLE i. - MISSION REQUIREMENTS

Design Mach:

Payload:

Range:

Fuel Reserve

Airport Conditions

Noise

Economics

2.2 (ISA day)

250 passengers

(93 kg/pass (205 ib/pass) x 250 =

23 247 kg (51 250 ibm))

7000 km (3780 n.mi.) (Zero wind)

5% block fuel

Missed approach at destination

Diversion 370.4 km (200 n.mi.)

(!SA, zero wind)

Hold at alternate 30 min @ 128.6 m/s

(250 kt) at 3048 m (i0 000 ft)

3505 m (ii 500 ft) TOFL

(ISA + 10°C (!8°F), SL)

0.052 tad (3 deg) glideslope

Full power takeoff

Max tire speed of 115.75 m/s

(225 kt) true ground speed

Runway loading not to exceed Concord_

if critical

Takeoff power cutback for Annex 16

monitor point climb gradient not !es_

than 4%

DOC based on ATA '67 method modified

for SCV operation and airline experi,_nce





1.2 Aircraft Design

1.2.1 Accommodation. - Passenger accommodation consists of a on_ class

single aisle cabin with 5 abreast seating as shown in the interier arrange-

ment of Figure i. Seat pitch is 0.86 m (34 in.) and width 0.51 _ (20 in.);

minimum aisle width is 0.45 m (18 in.).

1.2.2 Aerodynamics and Controls. - A general arrangement of the configuration

is shown in Figure 2. The airplane features a highly-swept arrow-wlng plan-

form with leading edge sweep angles of 1.225 rad (70.2 deg.), 1.i54 rad

(66.1 deg.), and 0.911 rad (52.2 deg.) for the root, mid, and tip wing sec-

tions, respectively. The aspect ratio is 2.06. The wing has leading and

trailing edge high lift devices and an aft horizontal tail to satisfy air-

port field length and approach speed criteria. The wing is hlghly cambered

to maximize cruise lift-drag ratio.

The selected wing planform for the common case aircraft is cf the SCAT

-15 arrow-wing family. The SCAT-15F planform is optimum for cruise at

Mach 2.7 with the planform parameters of _cot ALE = 0.719, _ = 4.034, and

notch ratio of.0.14 set to define a wing of minimum induced drag at

M c = 2.70. In order to preserve this optimum wing, the common case planform

was derived holding to the above planform parameters. The inboard wing sweep

and aspect ratio are 1.225 rad (70.2 deg) and 2.06 respectively for M c = 2.20.

Primary flight control surfaces also are indicated in Figure 2. Longi-

tudinal and directional control are provided by an all moving horizontal

stabilizer with geared elevator and all moving vertical fin, respectively.

Lateral control is provided by outboard ailerons, flaperons, and spoiler-slot

deflectors in a sequence scheduled by Mach number.

1.2.3 Propulsion. - The aircraft is fitted with four engines located in an

all-under-wing arrangement. The engine selected for the common else is a

low bypass ratio turbofan with a mixed-flow afterburner, designed for

steady-state cruise operation at Mach 2.2. The cycle characteristics of the

engine are summarized in Table 2.

The engine features an inverse throttle schedule. Combustor exit tempera-
o o

ture (CET) t is 1489 K (2680 R) durin_ takeoff as shown in the sec _nd column of

tHor section technology is defined in terms of combustor exit temperature

to avoid ambiguities associated with turbine entry temperature. Combustor

exit temperature is the same as the temperature at the entry to the first

turbine stator stage. Turbine entry temperature is usually referred to the

temperature at the entry to the turbine rotor stage. The injection of

cooling air through the stators upstream of the rotor stage resulus in a

rotor inlet temperature that is cooler than combustor exit temperature.





TABLE2. - ENGINECHARACTERISTICS

Thrust kN (ib)

Airflow kg/s
(!bm/sec)

Corrected Airflow
kg/s (ibm/sec)

Fan pressure ratio

Bypass ratio

Overall pressure
ratio

Combustorexit
temp OK (OR)

Afterburner temp
oK (OR)

Design Point

(ISA, SLS)

265 (59 560)

275 (605)

289 (637)

4.0

0.25

20

Takeoff

(ISA +lO°C, S L

M = 0.3)

167.92 (37 750)

257 (566)

255 (562)

1600 (2880)

1330 (2395)

3.23

0.34

15.4

1489 (2680)

Table 2. Combustor e:<iL temperatur_ is schcd<1],._d to patch the flow < pabiiity
O tJ

, _oSO R) at end oi climbof the inlet during climb and incre_iscs t< ]!_<]_) K ('*'

and during cruise. Afterbnrner is n{_[ ns_d !:_c £ni[ir_i c[imbout nor he first

{subsonic) portion of the climb to or,list. :\[ >k,ch 0.8. [h_ afterbur,.er is

!i[, and the aircraft climbs to cruisin Z altLtt_.d_, with th_ af,cerburnt " ]it.

Engine d_slgn bypass ratio is 0.25. Jl,e bypass ..... , is mixed w] :h the

turbine exit gases as they enter th_ aft_-rburncr The exhaust :,as_s Lr___

: L_CtOK no 2- Z ]_t2 .expanded thro_:gh a convergent-diverc<wnt actuatcd-do_r _ .

The _xt_rnai compression _i_let opera<<s c_-itical with only one _ _liqu_

shock wav_ at the initi_{l wedge and one str,J,ni<s_,il;tb_n oblique shock: wave

at :he cowl tip. This shock svsEem has dez!,}nsErat_d a pre_ssure reco, _rv <-f

90 percent with 3.4 percent b_eed.
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1.2.4 Structure. - The airframe structure employs advanced technology/

consistent with ICAO Class II definitions. Titanium comprises about 38 per-

cent of the structural weight with composite materials at 28 percent _all

secondary application) and steel, aluminum, and other materials at 14 iJercent.

Active controls systems are utilized to achieve structural weight savings;

e.g., relaxed static stability, maneuver load control, flutter margin augmen-

tation, gust alleviation, etc.

Figure 3 summarizes the structural concepts employed. The fusel__ge shell

is a skin-strlnger-frame design using titanium alloy (Ti-6AI-4V) t with weld-

bonded assembly of components. The main frames use low cost no-draft forging

technology. The wing and tail structural box are multispar construction with

titanium sandwich surface panels. The skins are Ti-6AI-4V, and the core is

Ti-3AI-2.5V. The face and core are joined by aluminum brazing. All _ing

trailing edge devices; i.e., plain flaps, flaperons, ailerons, and the hori-

zontal tail, are selected as the control surfaces for the active controls

system. Composite materials are employed for secondary structure application

to both the fuselage and wing structures.

A three-post landing gear is employed with 12 wheels on each truck.

Rigid and flexible pavement analyses have been conducted to verify that run-

way flotation requirements are no greater than those of Concorde. Both rigid

pavement stresses and flexible pavement LCNs are less than Concorde. For

Concorde the rigid pavement requirements are taken as 3.57 x 106 N/m 2

(518 ib/in 2) based on 0.305m (12 in) thick pavement and subgrade modulus of

reaction K=300. For a flexible pavement the limit is LCN = 116 for a 0.508 m

(20 in) thick pavement.

1.3 Parametric Analysis and Selection of Minimum TOGW Aircraft

Design of the minimum TOGW aircraft to achieve a 7000 km (3780 n.mi.)

range may be summarized in three steps:

• Initial or trial aircraft design resulting in a configuration _hich

does not exactly meet the range requirement

• Resizing of aircraft to achieve range requirement exactly

• Parametric design variation to find minimum TOGW configuration

Aircraft sizing and parametric variation of design is performed with the Lock-

heed developed Advanced System Synthesis and Evaluation Technique (ASSET)

vehicle synthesis model described in more detail in the next sections.

tThis designation defines a titanium alloy containing 6 percent aluminum

and 4 percent vanadium.

14
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1.3.1 Generation of TOGW Knothole. - Generation of a knothole with

constraints is shown diagran_natically in Figure 4.

For the initial off-deslgn-range configuration, a thrust/weight value of

0.252 and wing loading of 4.31 kN/m Z (90 ib/ft 2) were chosen. From _revious

experience, these values were anticipated to be close to the center cf the

TOGW knothole, so that parametric sizing equations are well within t_e range

of applicability. From the design-range baseline, thrust/weight and wing

loading were varied parametrically in order to generate the TOGW knothole.

When thrust/weight is varied the engine cycle (bypass ratio, compression

ratio, CET, etc.) remains constant. When wing loading is changed, e_ch wing

design remains geometrically similar; engine location is at a fixed !ercentage

of the wing semi-span.

1.3.2 Generation of Knothole Constraints. - In parallel with the mission

analysis program, an airport constraint program is run.

Approach speed is 81.3 m/s (158 keas), and approach angle of attack is

limited to a maximum of 0.131 rad (7.5 deg). Thus, CL is limited an_ for a

given value of T/W, the design is limited to a maximum value of wing loading.

On a plot of T/W and w/s, an approach constraint line may be drawn that

bounds feasible designs. In a similar manner, the takeoff field lenl_th con-

straint of 3505 m (ii 500 ft) also precludes certain values of T/W ard W/S.

Additional constraints evaluated are available fuel volume, tralsonic

acceleration capability, and rate of climb capability at cruise initiation.

Available fuel volume includes the outer wing out to the outboard engine, the

wing center section, and 36 514 kg (80 500 ib) in the aft fuselage. Excess

thrust/drag for transonic acceleration must be at least 0.3, and rate of

climb available at initial cruise must be at least 1.524 m/s (300 ft/min).

i

7

1.4 Noise Estimation Procedure

The calculation of overall noise level as a function of relatiw_ jet

velocity, and spectral distribution, is based on SAE AIR 876 (Refererce 6).

The directivity function, based on empirical Lockheed data, is dependent on

flight speed.

The method of calculating Jet noise used in AIR 876 (1965) does not con-

sider the effect of ground reflections that were present in the experimental

data. The method of measuring noise in FAR 36 also includes ground reflection

effects. Although ground reflection effects are not exactly the sam¢_ for the

two situations, there is no requirement to add ground reflection effects to

noise calculations used in this report.

Takeoff and approach noise is assumed to be measured using the rethods

of FAR Part 36 (1969). At takeoff, noise levels are computed for a _icro-

phone at 6482 m (3.5 n.mi.) from brake release on the runway centerline

16
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extension and at the noisiest point along a sideline which is 648 m

(0.35 n.mi.) from the runway centerline. On landing, noise levels are

computed at 1852 m (i.0 n.mi.) from the landing threshold with the aircraft

on a 0.052 rad (3 deg) glideslope, clearing the threshold at 15.24 m _50 ft)
altitude.

1.5 Cost Estimation Procedure

The direct operating cost (DOC) elements used in estimating Supersonic

Cruise Vehicle (SCV) operational costs are the same as those defined in the

Standard Method of Estimating Comparative Direct Operating costs of Turbine

Powered Transport Airplanes issued in December 1967 by the Air Transport

Association (ATA) (Reference 7). These cost elements are flight crew_ fuel

and oil, hull insurance, direct maintenance of flight equipment, and depre-

ciation. Although the same basic elements are used in calculating SC_7 DOCs,

detailed formulae and factors vary considerably. Formulae and factor-_ used

by Lockheed have been developed from CAB and other applicable data. Costs

are calculated in constant January 1976 dollars.

Crew cost is estimated using a Lockheed-developed formula with g.:oss

weight as the independent variable and based upon 1975 domestic actualk costs.

The results are adjusted for international operation (+i0 percent) and super-

sonic operation (+35 percent) and escalated to January 1976 (6 percenu/year).

The original formula and adjustment factors are developed from actual CAB

data. The 35 percent adjustment for supersonic operation was estimat_d by
an airline.

The ATA formula is used in estimating fuel cost. The cost of fu_l for

international operation at $0.102/liter ($0.385/gallon) is developed as an

average actual international cost of four U.S. airlines with significant

international operations.

The ATA formula is used in estimating insurance cost. The insura_nce rate

is multiplied by the aircraft cost. Aircraft cost includes total air_lane

production and investment costs, but excludes special support equipment. The

insurance rate (0.553 percent) is developed as an average cost over sixteen

years. The first year rate is set at 2.0 percent and brought down a curve

similar to that experienced by other aircraft. The first year rate ia set

considerably higher than current aircraft (i.i average) due to advanced

technology and risk.

Maintenance calculations are performed a level below the ATA method using

Lockheed-developed formulae. Labor and material are calculated separately for

equipment and furnishings, landing gear, tires and brakes, other systems,

structures, airframe related power plant, and engine. Each formula it com-

posed of a flight cost and a flight hour cost. A direct labor rate of

$9.00/hour is applied to direct labor hours. This is an average rate for

18





four major airlines. A maintenance burden factor of 2.32 is applied to
direct maintenance labor. This is a selected average for international
operation.

The ATA formula is used for estimating depreciation. Spaces factors,
however, are developed from airline usage related to fleet size. Spares
usage is estimated as i0 percent of airframe and 26 percent of engine based
upon commonusage by several airlines with a commonfleet of 26 aircraft.
Period of depreciation or aircraft life is estimated at 16 years.

=





2. RESULTS OF STUDY

This chapter shows results of parametric analysis for the s_udy and

defines the optimized configuration.

2.1 Carpet Graph of TOGW

Figure 5 shows a carpet graph of TOGW for the CL1627-I. Un<onstrained

minimum TOGW is 261 269 kg (576 000 ib). For clarity, TOFL and ._pproach speed

constraints are omitted from the figure.

2.2 Knothole Plot of TOGW

The TOGW knothole (Figure 6) presents the same data as in t1_e carpet

plot but in a different form. In addition, the approach speed cc_nstraint,
TOFL constraint and fuel volume constraint are shown.

2.2.1 TOFL Constraint. - The ground rules of this study do not state any

noise limits, so there is no prohibition against using full afterburner on

takeoff, if required. The takeoff field length constraint, as shown on

Figure 6 is therefore somewhat artificial. Having selected the optimized

configuration based on the TOGW knothole and approach speed constraint only,

takeoff thrust is then selected within the range of available power settings

(keeping the same basic engine size) so that the optimized configuration just

achieves the required 3505 m (ii 500 ft) TOFL.

2.2.2 Approach Speed Constraint. - The approach speed constraint of 81.3 m/s

(158 keas) results in a significant penalty to TOGW (and hence direct operating

cost). As a result, there would be considerable economic pressure to permit

a higher approach speed. For comparative purposes, approach speed constraints

up to 87.5 m/s (170 keas) are also shown on the knothole plot to indicate the

sensitivity of TOGW to approach speed. A reduction of 6804 kg (15 000 ibm) in

takeoff gross weight is achieved by a 6.2 m/s (12 keas) increase in approach
speed.

2.2.3 Fuel Volume Limit. - Fuel is carried in the wing between ti_e fuselage

and the outboard engine mounts, in the wing carry through box, and in the

fuselage outside the wing box if necessary. The fuel limit is therefore a

strong function of wing area. However, it does not affect the design of the

optimized configuration. Fuel volume available in the wing and carry through

box alone is 132 813 kg (292 803 Ibm) whereas only 129 320 kg (285 I01 Ibm)
is required for mission and reserves.
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2.1._ Thrust Margin at M = 1.15 and Start of Cruise. - A check was mlde of

thrust margin (specific excess power) during transonic acceleration and at

start of cruise. Constraints were set for a thrust margin of 0.3 at ".I= 1.15

and SEP = 1.524 m/s (300 ft/min) at start of cruise. Figures 7 and 8 show

tbat neither of these constraints affect the optimized configuration.

2.3 Definition of Constrained Optimum Configuration

Based on Figure 6 the constrained optimum configuration is defin:_d such

that thrust/weight is 0.254 and wing loading is 3.830 kN/m 2 (80 Ib/ft/).

Takeoff gross weight is 269 483 kg (594 109 ibm). A detailed listing of air-

craft characteristics, in the format required by WG/E, is given in Table 3.

A general arrangement drawing of the optimized corfiguration is shown in

Figure 9. Installation drawings of the inboard and outboard engines are

shown in Figures i0 and 11. The takeoff profile is shown in Figure 12.

Noise levels and DOC are given in Table 4.
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TABLE 3. - CL1627-I CHARACTERISTICS OF MINIMUM

TOGW AIRCRAFT FOR 7000 km RANGE

Airframe

Payload kg (ibm)

Takeoff Gross Weight kg (ibm)

End of Mission Weight kg (ibm)

Operating Weight Empty kg (ibm)

Maximum Tankage Available kg (ibm)

Wing incl. center section box

Wing incl. center section box

plus aft fuselage
2

Wing Area. Gross m (ft 2)

2
Wing Area, Outside Fuselage m "'Cft2)

Aspect Ratio

Span m (ft)

Root Chord m (ft)

Tip Chord m (ft)

Taper Ratio

_IAC m (ft)

L.E. Sweep root rad (deg)

L.E. Sweep mid rad (deg)

L.E. Sweep tip rad (deg)

t/c Root %

t/c Tip %

Average Thickness Ratio, V/S 372_ %

Fuselage Length m (ft) "

Fuselage Diameter m (ft)

Cabin Diameter m (ft)

2
Fin Area m (ft 2)

2
Tail Area, Gross m (ft 2)

23 247

269 483

156 618

116 918

132 813

169 327

689.9

551.8

2.06

37.66

40.88

4.77

0.117

25.04

1.225

1.154

0.911

3.2

2.85

2.18

89.51

3.76

3.51

28.85

59.75

(51 250)

594 109)

345 284)

!57 759)

292 803)

373 303)

(7426)

(5939)

[23.56)

13,4.14)

(15.65)

(82.15)

(70.2)

(66.1)

(52.2)

293.7)

(12.33)

(ii.50)

310.6)

643.0)
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TABLE3. - Continued

AERODYNAMICS

Segment Lift/Drag Ratio Lift Coefficient

Midcruise

Subsonic Cruise
(At start of mission)
Hold

8.45

9.58

0.094

0.368

14.76 0.200

AIRFIELDPERFO_NCE

Condition Speed, m/s (ft/sec) L/D Weight _g (ibm)

Screen, 10.67 m (35 ft)
Cutback

Appr6ach

i07.1 (351)

108.8 (357)

81.3 (267)

5.7

6.6

5.8

264 531 !583 192)

264 028 i582 083)

156 618 _345 284)
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TABLE 4. - CL1627-I NOISE LEVELS AND DIRECT OPERATING C<STS

Mission: Seats 250

Design Range 7000 km (3780 n.mi.)

Cruise Mach No. 2.2

Bypass Ratio 0.25

Aspect Ratio 2.06

T ]

T

!
t

i

i

t

=

Stage

Length Load
#:

Weight

Take-off

Thrus t/wt

+
Costs

c/seat km

(¢/_eat st.mi.)

Lockheed

Method

km n.mi.

7000 (3780)

6000 (3240)

7000 (3780)

7871 (4240)

Factor

1.0

0.6

0.6

0.6

kg (lbm)

269 483

(594 109)

233 846

(515 543)

252 133

(555 858)

269 483

(594 109)

Wing

Loading
N/m 2 (Ib/ft 2)

3830

(80)

3324

(69.42)

3584

(74.85)

3830

(80)

Ratio

0.254

0.293

0.272

0.254

DOC

1.65

(2.66)

1.60

(2.58)

i._9

(2.56)

I_.60

(2.57)

TOC

3.12

(5.02)

2.80

(4.51)

2.70

(4.35)

2.65

(4.27)

Noise Levels: (EPNdB) Sideline - 119.0 at 648 m (0.35 n._i.)

Flyover - 122.6 at 6482 m (3.5 n.mi.)

Approach- 110.9 at 1852 m (i.0 n._i.)

Fuel is off loaded at reduced payload and range

+Costs are normalized by aircraft capacity, not by number of pax. carried
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3. CONCLUSIONS AND RECOMMENDATIONS

The Lockheed-California Company has completed the synthesi_ of a

supersonic cruise vehicle as a part of the "common case" study to compare

characteristics of SSTs designed for the same mission by Lockheed, McDonnell

Douglas, British Aerospace, Aerospatiale, and the U.S.S.R. The primary guide--

lines are ICAO Class II technology, payload - 23 247 kg (51 250 ibm), range -

7000 km (3780 n. mi.), cruise Mach number - 2.2, and takeoff field length no

greater than 3505 m (ii 500 ft).

The leading characteristics of the Lockheed design are TOG_ - 269 483 kg

(594 109 ibm), operating weight empty (OEW) - 116 918 kg (257 759 ibm), wing

loading (W/S) - 3830 N/m 2 (80 ib/ft2), thrust/weight (T/W) - 0.f_54, design

point DOC - 1.65 C/seat km (2.66 C/seat st. mi.), sideline noise - 119.0 EPNdB,

flyover noise - 122.5 EPNdB, approach noise - 110.9 EPNdB. A second configura-

tion was designed for a range of 7408 km (4000 n.mi.) with the same values of

T/W and W/S. TOGW for this design is increased to 286 537 kg (_31 705 ibm).

Detailed geometric, aerodynamic and performance characteristics of both

designs are given in accordance with study requirements.

The Lockheed supersonic cruise vehicle design should be conpared with the

designs of the other "common case" study participants in order to calibrate

the noise/cost sensitivity studies.
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APPENDIXA

CLASS II TECHNOLOGY (1980-1985 Start of Design)

ICAO CAN WG/E TECHNOLOGY ASSESSMENT (i0 March 1977)

Airframe Structure

Primary -

Composites

Titanium

Advanced Structural Concepts

Axisymmetric Inlet

Secondary -

Composites

Systems

Active Controls

Multiplexed Circulation of Data

Integrated Systems

New Processing (Miniaturization)

Integration to Optimize Fuel Consumption

Powerplants

Cycle

Higher TET

Improved Compressor/Turbine Aerodynamics

Higher Performance Materials

Variable Geometry Components

Conventional

Advanced

Noise Suppression

Compressor Noise -

Design (2-3 stages)

Acoustical Treatment

No

Ye_

Ye_

Ye,_

Ye_

Ye_

Ye:_

Total

Ye_

Ye_

Turboj euLow Bypass Fan

1600°}_

Yet_

Ye_
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APPENDIX A

CLASS II TECHNOLOGY (1980-1985 Start of Design) (Continued)

!CAO CAN WG/E TECHNOLOGY ASSESSMENT (I0 March 1977)

Noise Supression

Internal Noise -

Turbine Design

Combustor Design

Hot Treatment

Jet Noise -

Primary Nozzle

Mixed Flow (internal)

Mechanical Suppressors (Retractable)

Coannular

Installation

Yes

Yes

Yes

Yes

Yes

Yes

No

No
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APPENDIX B

CONFIGURATION AND PERFORMANCE DATA FOR 4000 N.MI. AIR(IRAFT

This Appendix contains data for a configuration with the same thrust/

weight and wing loading as the optimum configuration for a 7000 km (3780 n mi

range. However, this aircraft is resized to fly a design range of 7408 km

(4000 n. miO. Takeoff gross weight is 286 537 kg (631 705 ib). The followii_g

tables and figures are given:

Table B-I CL1627-2 Aircraft Characteristics for 4000 n.mi. range

Table B-2 CL1627-2 Noise Levels and Direct Operating Costs

Takeoff profile is the same as for the CL1627-I (See Figure i_)





42

TABLEB-I. CL1627-2AIRCRAFTCHARACTERISTICSFOR
4000 n.mi. RANGE

Airframe

Payload kg (ibm)

Takeoff Gross Weight kg (ibm)

End of Mission Weight kg (ibm)

Operating Weight Empty kg (ibm)

Maximum Tankage Available kg (ibm)

Wing incl center section box 146 392

Wing incl center section box + aft fuselage 182 906

Wing Area, Gross m 2 (ft 2) 733.6

Wing Area, outside fuselage m 2 (ft 2) 590.2

Aspect ratio 2.06

Span m (ft) 38.86

Root Chord m (ft) 42.16

Tip Chord m (ft) 4.92

Taper ra_io 0.117

MAC m (ft) 25.82

L.E. Sweep root tad (deg) 1.225

L.E. Sweep mid tad (deg) 1.154

L.E. Sweep tip tad (deg) 0.911

t/c root % 3.2

t/c tip % 2.85

3/2
Average thickness ratio, V/S % 2.18

Fuselage length m (ft) 89.51

Fuselage diameter m (ft) 3.76

Cabin diameter m (ft 3.51

Fin area m2 (ft 2) ]1.83

Tail area, Gross m2 (ft 2) 65.75

23 247

286 537

162 962

122 135

(51 250)

(631 705)

(359 270)

(269 261)

(322 738)

(403 239)

(7896)

(6353)

(127.5)

(i_8.3)

(16.14)

(84.71)

(7C.2)

(66.1)

(52.2)

(293.7)

(12.33)

(11.5o)

(342.6)

(708.2)





TABLEB-I. CL1627-2AIRCRAFTCHARACTERISTICSFOR
4000 n.mi. RANGE(Continued)

AERODYNAMICS

Segment Lift/Drag Ratio Lift C_efficient

Midcrulse

Subsonic Cruise
(at start of mission)
Hold

8.50

9.60

14.95

0,092

0,368

0_196

AIRFIELDPERFORMANCE

Condition Speed, m/s (ft/sec)

Screen, 10.67 m (35 it)
Cutback

Approach

107.1 (351)

108.8 (357)

81.3 (267)

L/D

5.7

6.6

5.8

Weight, kg (Ib)

281 275 (620 106)

280 778 (619 010)

162 962 (359 270)
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TABLE B-2.

Mission:

CL1627-2 NOISE LEVELS _MqD DIRECT OPEP_TIN_; COS S

Seats 250

Design Range 7408 km (4000 n. mi.)

Cruise Mach No. 2.2

By-Pass Ratio 0.23

Aspect Ratio 2.06

Stage

Length

km

7408

Load

n.mi. Factor

4000 1.0

Noise Levels:

Weight

kg (ib)

286 537

(631 705)

Take-Off

Wing

Loading

N/m 2 (ib/ft 2)

3820 (80)

Thrust/wt.

Ratio

0.254

II Co s t s

(C/seat s t .rni.)

Lockheed

Methed

I
DOC TOC

1.69 3.14

(2.72) (5.06)

EPNdB Sideline = 119.3 @ 648 m (0.35 n.mi.)

Flyover = 122.8 !_ 6482 m (3.5 n.mi.)

Approach = 110.9 @ 1852 m (].0 n.mi.)
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